Image Super-resolution for Ultrafast Optical Time-stretch Imaging

Edmund Y. Lam
The University of Hong Kong, Hong Kong
Presentation Outline

• Introduction of Time-stretch Imaging
• Modeling the Image Sampling
• Super-resolution with Subpixel Shift
• Evaluation Simulation
• Experiment Results
• Summary & Future Work
Time-stretch Imaging

• **Application**
 - Ultrafast optical microscopy
 - High-throughput microfluidic (8 m/s)
 - 100,000 cells/s
 - >10 MHz line scanning rate
 - Real-time imaging
 - Connected with digital system
 - Cancer cell detection
 - Precision Medicine

• **Challenges**
 - Expensive oscilloscope
 - HKD 1,000,000
 - Huge data processing
 - 80 GB/sec

• **Next:** Home-built system
Time-stretch Imaging System

Phase 1: Spectral Encoding
- Microfluidic flow, ~100,000 cells/sec
- Line-scan laser

Phase 2: Time-stretch
- Time-stretch via few-mode fiber
- Amplify with an optical gain

Phase 3: Digitize
- Transformation from optical to electronic signal
- Continuous signal sampling
- 2-D Cellular image formation on FPGA
Modeling of Image Sampling

- **Line Scanning and Time Stretch (Optical System)**
 - Fixed frequency line scanning (colorful bands on the cell image)
 - Time-stretch the spatially-encoded signal, generate the continuous signal

- **Normal Line-aligned Sampling (High-speed ADC)**
 - Uniformly sampling the time-stretched signal (3 sampling points per line in following example)
 - Digitize the samples from analog signal to 8-bits grey-scale pixel data

- **2D Image Stack (FPGA, Field Programmable Gate Array)**
 - Construct the cell image
Sampling Model Parameters

- Parameters set in line-aligned sampling

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Denotation</th>
<th>Sample Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Pulse Frequency (fixed)</td>
<td>f_{laser}</td>
<td>11.4 MHz</td>
</tr>
<tr>
<td>ADC Sampling Frequency</td>
<td>f_{sampling}</td>
<td>3.99 GHz</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>v_{flow}</td>
<td>1 m/s</td>
</tr>
<tr>
<td>Imaging Width</td>
<td>Width</td>
<td>250 µm</td>
</tr>
</tbody>
</table>

- Calculation of digitized image resolution (unit: pixel/µm)

$$R_{\text{horizontal}} = \frac{f_{\text{sampling}}}{\text{Width} \times f_{\text{laser}}} \quad R_{\text{vertical}} = \frac{f_{\text{laser}}}{v_{\text{flow}}}$$

<table>
<thead>
<tr>
<th>Variables</th>
<th>Denotation</th>
<th>Sample Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Resolution (Horizontal)</td>
<td>$R_{\text{horizontal}}$</td>
<td>1.4 pixel/µm</td>
</tr>
<tr>
<td>Image Resolution (Vertical)</td>
<td>R_{vertical}</td>
<td>11.4 pixel/µm</td>
</tr>
</tbody>
</table>

The slower, the more information be caught in vertical
Spatial imaging range in horizontal

\sim8x unbalanced H/V resolution

350x Sampling 350 points per line
Unbalanced H/V Resolution

Demonstration of unbalanced H/V resolution image, image is sampled more tightly in vertical direction

MCF-7 (breast cancer cell) imaging with line-aligned sampling method, sampling frequency is 3.99 GHz. Jagged-edge is apparent in horizontal direction

• How to optimize the sampling?
 • Method Constraints
 • Only slightly adjust the ADC sampling frequency, but still sampling line scans uniformly
 • No computation overhead (complicate interpolation computation), because of the ultrafast throughput (4GB/s)
 • Acceptable data increment
 • Method Assumption
 • Combine several lines into one line
 • Different with line-aligned sampling, sampling points between lines should be shifted / interleaved
Super-resolution with Subpixel Shift

- Adjust the sampling frequency (T to T+ΔT)
 - Previous line-aligned sampling: 3 points per line (in previous example picture)
 - Super-resolution sampling: 8 points per 3 lines (in this example picture), not integer sampling points per line
 - new co-prime parameters: \{p, q\}

- Interleave samples of every q lines to one super-resolution line
 - Interleave pattern repeats every q lines
 - In the example picture, horizontal resolution will be \(~3x\) higher (with the subpixels); vertical resolution will be \(~3x\) lower
Super-resolution Sampling

• Relations of parameters in super-resolution sampling
 • Sampling frequency is decided by \{p, q\} and laser frequency, also should be constrained at \(~4\text{GHz}\).
 • q decides spatial line number that used to generate the super-resolution line. Case q=1 is equivalent to the normal line-aligned sampling
 • Hence, p is a proper number that constrained by q and sampling / laser frequency.

\[
\begin{align*}
 f_{\text{sampling}} &= f_{\text{laser}} \times \frac{p}{q} \\
 R_{\text{horizontal}} &= \frac{p}{\text{Width}} \\
 R_{\text{vertical}} &= \frac{f_{\text{laser}}}{v_{\text{flow}} \times q}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Previous</th>
<th>Super-resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, q</td>
<td>350, 1</td>
<td>1024, 3</td>
</tr>
<tr>
<td>(f_{\text{sampling}})</td>
<td>3.99 GHz</td>
<td>3.89 GHz</td>
</tr>
<tr>
<td>(R_{\text{horizontal}})</td>
<td>1.4 pixel/\mu m</td>
<td>4.1 pixel/\mu m</td>
</tr>
<tr>
<td>(R_{\text{vertical}})</td>
<td>11.4 pixel/\mu m</td>
<td>3.8 pixel/\mu m</td>
</tr>
</tbody>
</table>

• Next Step: Choose a proper q
Evaluation of different \{p, q\}

- **Sampling simulation with different \{p, q\}**
 - **Motivation of this evaluation:** Choose a proper q value
 - Source image: sampled with **80GSa/s oscilloscope**, crop the cell area, **340** pixel/line
 - **Down-sampling** the image ~20x to ~4GSa/s, ~17 sample points / line, \((p/q \cong 17)\)
 - Reshape the 2D image to a whole line and do **1D down-sampling**
 - Case \(\{p=17, q=1\}\) is the normal line-aligned sampling
 - The other cases are super-resolution with subpixel shift, with different \{p, q\} set, similar sampling frequency

80GSa/s, Oscilloscope, HKD 1,000,000

Choose q=3, Trade-off between Resolution & Computation Cost

If q>6, Image distortion appears

4GSa/s, ADC + FPGA Super-resolution HKD 50,000
Frequency Domain Analysis

• Analyze the previous simulation results in frequency domain
 • Motivation of the analysis:
 • Verify that the high frequency information is revealed by the super-resolution (make cell texture clearer)
 • Evaluation the error that introduced by the sub-pixel shift (theoretically error increase as the q becomes bigger)
 • Fourier Transform in analysis
 • Firstly, reshape the 2D image to a whole 1D line
 • 1D Fourier Transformation to 1D frequency domain, because the image is sampled line by line
 • Based on Nyquist-Shannon sampling theorem
 • MAX frequency in source image = 40 GHz (sampling frequency is 80 GHz)
 • MAX frequency in line-aligned sampled image (q=1) = 2 GHz (sampling frequency is 4 GHz)
 • MAX frequency in image with super-resolution = 2*q GHz (With the super-pixels, we assume the equivalent sampling frequency increases)
 • Error Analysis
 • Replace the shifted sub-pixels with the original ones in the corresponding position of source image
 • Do the same Fourier Transform to get accurate frequency domain information
 • Calculate the error introduced by sub-pixel shift
Frequency Analysis Results

q=3, reveal the high frequency information, with acceptable error

If q>6, most high frequency information are covered by error and is not effective
Experiment Results

MCF-7 (breast cancer cell) imaging with line-aligned sampling method, sampling frequency is 3.99 GHz.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, q</td>
<td>350, 1</td>
<td>$R_{horizontal}$</td>
<td>1.4 pixel/µm</td>
</tr>
<tr>
<td>$f_{sampling}$</td>
<td>3.99 GHz</td>
<td>$R_{vertical}$</td>
<td>11.4 pixel/µm</td>
</tr>
<tr>
<td>Interleave</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCF-7 imaging with the proposed super-resolution method, sampling frequency is 3.89 GHz.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, q</td>
<td>1024, 3</td>
<td>$R_{horizontal}$</td>
<td>4.1 pixel/µm</td>
</tr>
<tr>
<td>$f_{sampling}$</td>
<td>3.89 GHz</td>
<td>$R_{vertical}$</td>
<td>3.8 pixel/µm</td>
</tr>
<tr>
<td>Interleave</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary & Future Work

• Super-resolution in cellular imaging
 • Slightly adjust the sampling frequency
 • No sampling data increment
 • Acceptable interleave computation
 • Obvious image quality improvement

• Future Work
 • Proper interpolation to eliminate the jagged edge
Thanks.